
_-
"■" ^^■M

AD-757 364

THE COMPUTING TIME OF THE EUCLIDEAN
ALGORITHM

George E. Collins

Stanford University

Prepared for:

Advanced Research Projects Agency
National Science Foundation

January 1973

DISTRIBUTED BY: m
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

—• mm.

^-^-^

STANFORD ARTIFICAL INTELLIGENCE LABORATORY
MEMO AIM-187

STAN-CS-73-331 V
CD
CO

ifi
o
Q

THE COMPUTING TIME
OF THE EUCLIDEAN ALGORITHM

BY

GEORGE E. COLLINS

SUPPORTED BY

NATIONAL SCIENCE FOUNDATION
GRANT GJ-30125X

AND
ADVANCED RESEARCH PROJECTS AGENCY

ARPA ORDER NO. 457

JANUARY 1973 D o: DV

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

R»P'oduc>c< br

.^'ONAL TECHNICAL
INFORMATION SERVICE

U J D.portm«ol 6« Comm,,,,
Spnngfi.ld VA 22IJI

-

Unclassified

Sritintv C l«»M(ir«lii'n

DOCUMENT CONTROL DATA R&D
,$rc,HH, clmt.ihrmtion of »«/». *o4y ol mbtltmt I and induing mnnoffi<*< fvl bt «n(«f«<» »h»" »■« wfll rtporl I. f/».«I(I«JI

Stanford University
Computer Science Department
Stanford, California 9^503

la. HCPCKT ncuniTT CL**SIFIC* TIO»

Unclassified
2b 0«OuP

The Computing Time of the Euclidean Algorithm

4 OdCniPTlVC NOTC* fTVp« of report anrf nc/uaiv» dar*i |

technical
< «UTHOMIII (fit'l nmm», middl* miiiml. Imn namm)

Oorge E. Collins

« mt*omr o* TI

January 1973
•a cONTMacr CM cnaNT NO

NSF Grant GJ-30125 X
t pnojtc r NO

ARPA Order No. 1+57

'a, TOTAL NO or Pact»

■*QÖ
76 NO or ncFi

12
»a Ol

STAN-CS-73-331

9b. OTHin NCPOHT NOItl (Any olhmt numbara ihml may fc» aitlgnad
ihn taporl)

AIM-187
10 OIITRiauTION «TATIMCNT

Distribution Unlimited

II SUPPLEMENTanv NOTES II SPONSOPING UILI TAPV aCTIVITT

11 »BS rR»c

The maximum, minimum and average computing times of the classical Euclidean
algorithm for the greatest common divisor of two integers are derived, J>o within
codominance, as functions of the lengths of the two inputs and the output.

m7Sf„U73
S/N 0101.807-6801

(PAGE #) r Unclassified
Security Classification

:

D
0
ü
D
0

IQ
Q

0
D
Q

D
n
:.

D
0
[)

II

STANFORD ARTIFICIAL INTELLIGENCE LABORATORY

MOM) AIM-1&7

COMPUTER SCIENCE DEPARTMENT
REPORT NO. CS-551

January, 1975

THE COMPUTING TIME

OF THE EUCLIDEAN ALGORITW

George E. Collinst

ABSTRACT: The maximum, minimum and average computing times of the
classical Euclidean algorithm for the greatest common
divisor of two integers are derived, to within codominance,
as functions of the lengths of the two inputs and the output.

+On leave frou the University of Wisconsin-Madison.

This research is supported bv NSF grant GJ-50125X, the Wisconsin Alumni
Research Foundation, and (in part) by the Advanced ftefiearch Projects
Agency of the Office of the Secretan of Defense (SD-1Ö5J.

The views and conclusions contained in this document are those of the
author and should not be interpreted as necessarily representing the

official policies, either expressed or implied, of the *"•■•* »«J*?!
Foundation -.he Advanced Research Projects Agency, or of the United States

Government.

Reproduced in the United States. Available from the National Technical

Information Service, Springfield, Virginia 221S1.

V-
— .^_

— —

..

n
i.

ü

u

::

D
D
I
D
Q

1. Introduction

Knuth, [II], Dixon, [6] and [7], and Hellbronn, [8], have recently

investigated in considerable depth the average number of divisions performed

in the Euclidean algorithm for integers. Although many interesting questions

remain unanswered, the relatively elementary result of Dixon in [7] already

suffices to completely determine the average computing time of the Euclidean

algorithm to within a constant factor, which factor is in any case dependent

on the particular computer Mcd and inessential details of the implementation.

Such a determination of the average computing time of the Euclidean algorithm

is the main result of the present paper. The maximum and minimum computing

times of the Euclidean algorithm for integers will also be derived since,

although their determination is quite elementary, they have apparently not

previously been published. These computing times are all derived as functions

of three variables, namely the lengths of the two inputs and the length of the

resulting g.c.d. (greatest comnon divisor). Previous results on the computing

time of the Euclidean algorithm ([2] and [11], Section h.^,2, Exercise 50) have

been limited to upper bounds on the maximum computing time.

 —— - ^MMM

——
— ■ " ■

I
I
I

I
I
I
I
1
I
1
I
I
I
I
1
I
I
1
1

2. Dominance and Codcrolnance

The reUtlon» of dominance and codominance between real-valued function«

were introduced in [5], where they were used in the analysis of the computing

time of an algorithm for polynomial resultant calculation. The related concepts

and notation have subsequently been adopted by several authors, for example.

Brown, [1], Heindel, [9]. and Musser. [12]. The definitions and some funda-

mental properties will be repeated here since they will not yet be familiar to

many readers.

If f and g are real-valued functions defined on a conmon domain S we say

that f is dominated b^ g, and write f A g, in case there is a positive real

number c sich that f(x)< c.g(x) for all x S. We may also say that g dominates

f, and write g > f. Dominance is clearly a reflexive and transitive relation.

It Is Important to note that the definition is not restricted to functions of

one variable since the elements of S may be n-tuples.

Knuth ([10], pp. 10U-106) defines f(x)-0(g(x)) in case there is a positive

constant c such that |f(x)|< c.|g(x)|. As long as one is dealing only with non-

negative valued functions, this formally coincides with the definition above of

f ^ g. Although Knuth implies that this definition is applicable only when f

and g are functions of one varit-Sle, he in fact uses it for functions of more

than one variable (e.g. [II], p. 388) in a manner which is consistent with our

definition. Thus dominance is apparently a new notation and terminology but

not a new concept. Although Knuth discussed at length the logical weaknesses

of the 0-notation, he chose not to abandon it in favor of the more natural

notation cf an order relation.

If f < g and g A f then we say that f and g are codominant, and write

fwg. Codominance is clearly an equivalence relation. If f •< g but not g ^ f

then we say that f is strictly dominated b^ g, and write M g. We may also

2

—« mm

—
—

0
I!

I

0
D
D
a

11

say that g strictly dominates f, and write g >f. Strict dominance is

clearly irreflexive and transitive. Whereas the O-notation has no counter-

parts for the codominance and strict dominance relations, it will become

apparent that these are important concepts in algorithm computing time analyses.

Furthermore, the O-notation has a somewhat different meaning in asymptotic «-

nalysis than the one used by Knuth (see, e.g., [5])«

If f and g are functions defined on S and S. is a subset of S, it will

often be convenient to write i -£ g on S. in case f. ^ g, . where f. and g are

the functions f and g restricted to S. . Also, if SC S.x.-.xS , a Cartesian prod-

uct, we will denote by f the function f restricted to ({a} fiS^x. . .xS)nS; that is,

f (xp,...,x)-f(a,x?,... ,x) for (a.x-,...,x)£ S . Similarly we may fix any

other of the n variables of f.

Dominance and codominance have the following fundamental properties, most

of which were listed by Musser in f 12] .

Theorem 1. Let f, f., fp, g, g, and gp be non-negative real valued functions

on S, and let c be a positive real number. Then

(i

(b

(c

(d

(•■

{i

(|

frJcf

If f1 ^ g1 and f2i g2, then fj+f^ g1-*-g2 and f^ f^ g^ g2.

If ^ < g and f2 < g, then f^ -< g.

max(f,g)^f+g.

If 1 •< f and 1 < g, then f+g < f-g.

If 1 ■< f, then f^f+c.

Let S£ S.x. . .xS and a fc S. . If f 4 g, then f •< ga-

Let S«S Ü Sp. If f / g on S, and f ■< g on S2, then f ^ g on S.

Proof. These properties follow iimediately from the definition, except

for (e). To prove (e), assume 1 ^ f and 1 ^ g so that, for some positive real

number c, cf > 2 and eg > 2. We then have (cf-2) (cg-2)> 0, so

c2fg^> 2c(f+g) > c(f+g)-H4. Hence c2fg> c(f+g), cfg> f+g and f+g ■< fg. f

5

"

m~m

fl

u
n
U

..

D
0
Q

0
D
0
Ö

0
0

5. Computing Time Functions

Let A be any algorithm and let S be the set of all valid inputs to A

(the elements of S may be n-cuples). We associate with A a computing time

^unction t. defined on S, t (x) being thj number of basic operations per-
A A

formed by the algorithm A when presented with ehe Input x, a positive in-

teger. This assumes that the algorithm is unambiguously specified in terms

of some finite set of basic operations. Changing the set of bf.sic operations

(as in reprogramming the algorithm for a different computer) will result in

changing the computing time function tA. Alternatively, we could take the

view that this represents a change in the algorithm. However, if Z^ and B^

are two sets of basic operations such that each operation in B1 can be per-

formed by a fixed sequence of operations in B2, and vice versa, then the com-

puting time functions associated with B. and B2 for any algorithm A are co-

dominant, and we will concern ourselves only with the codominance equivalence

class of t . Thus the choice of basic operations is somewhat arbitrary. We
A

assume a choice which is consistent with any of the existing, or conceivable,

random access digital computers but, in order to avoid the triviality of

finiteness, with a memory which is indefinitely expandable.

The function t. is t^equently too complex to be of interest for direct

study. Instead, we ordinarily decompose S into a disjoint union S ■ u
n=isn'

where each S is a non-empty finite set, S being a denumerable set. The choice
n

of decomposition is made on the basis of some prior knowledge or some conjecture

about the general behavior of t.. Relative to a decomposition Ä5={S1 ,S2,S,.. .}

+
of S we define maximum, minimum and average computing time functions, tA, tA and

t. onQr as follows, where JS | denotes the number of elements of S^.

tX^^s'AW' (1)

mmmmmmm

• •

Q
Q
Q

(i

Ö

Q

Ü

U

Ü

0
0

D

a
o
D
Ö

n
(2)

(5)

As illustration, and in preparation for our analysis of the Euclidean

algorithm, let us consider the computing times of the classical algorithms

for arithmetic operations, that is, addition, subtraction, multiplication

and division, of arbitrarily large integers. We assume that all integers are

represented in radix form relative to an integral base ^2 , as discussed by

Knuth in [11], Section U.J- We know that the computing times of these al-

gorithms depend on the lengths of the inputs.

Following Musser, [12], we denote by L (a) the p-length of the integer a,

that is, the number of digits in the radix form of a relative to the base p.

If fxl is the ceiling function of x, the least integer greater than or equal

to x, we have

L (aHlogQ(|al+l)l, (k)

for a^O, and we define L (0)"1.
B

In most contexts the base ß is fixed and we write simply L(a) for the

length of a. The omission of the subscript is further justified by the ob-

servation that, Y being any other base, we have

I Y
(5)

where L and L are functions defined on the set I of all integers. In fact,
0 Y

we can use the definition {k) when a is any real number and we then have

L (•)«•!■(|«|-«) on R, (6)

where In is the natural logarithm and R is the set of all real nucbers, and

(6) clearly Implies (5)- Ihe length function also has the following easily

verified fundamental properties:

L_ Mi A

— — —

..
L(a+b) 1 L(a)+L(b) fora,b£I, (7)

i.

r

;:

0
Q
11
D
fl

1)

I
i

I the set of integers,

L(«b)'>*L(a)+L(b) for a,b< I-{0}, (8)

L([a/b])^L(a)-L(b)+l for a.b « I and |a|>|b|X). (9)

We will also need the following theorem.

—, n

Theorem 2. (a) tCflJ.j«^ ^^^^(«i) for ai V I' ^ L^TTi-lai^

^".^(a^ for a1 ant I-f-1,0,1).

Proof. L(ab)< L(a)+L(b) for a,b<I, so MTl^a^ 2_ "^(a^ by induc-

tion on n, proving (a). To prove (b), assune first that 2<jai|<ß for 1< i < n.

Then L(nJ.l«1)> ^gBT^-1la1l-(logp2)log2T^.1lail> (logp2)log22
n=(logp2)n-(logp2)

^J.^), so^^LCa^^ (lO^rtLCflJ.^).

Next, assume L (ai)> 2 for l<i^i, and let i^L (a^ . Then L(TT^atlai)>log

(<=lN) > ^^i^'^I^V1) ^^i'i72' soIi=i L(ai) ^i'SJ
Combining these two cases, we may assume L(a)=1 for l<i < m and L(a)> 2

for m+l< i < n. Then ^ "^(a^ (log2ß)L(T/
n
i_1ai) + 2L(TT^s.^+1a1)< 2(log2p)

{L(T^=1a1)+L(TTj=m+1ai)}<li(log2p)L(T^mlai) since L(a)+L(b)< 2L(ab) for

a,b€ X-(0).|

It should be noticed that a simple inductive proof of (b) was not

possible because n is regarded as a variable, not as an arbitrary but fixed

positive integer. As an immediate corollary of Theorem 2, we have

L(ab)~bL(a) for a,b« I, |a|> 2 and b> 0. (10)

If A, M and D are the classical algorithms for addition (or subtraction),

multiplication and division, respectively, as described in [11], Section U.J,

then we clearly have

 , ttfMMiMta ■^MMHMüiiai

—" ■"■ '" " •'" —•

tA(a,b)/>'L(a)+L(b) for a,b < I-fo}, (U)

i .
•^(3,0)^1(3)^(0) for a,b« I-fO), (12)

u

li

tD(3,b)'vL(b) . L([a/b]) for 3,51 1 and |a|>|b|X). (15)

Thus, for these algorithms, the natural decomposition of the set

of=f (3,b):a,b£ 1} consists of the sets S =ffs,b) :L(a)-m4L(b)«n} . If we
** m, n

+ + > _ *■
write t (m.n) in pl3ce of t (S), and similarly for t and t , then from

(11), (12) and (Ij), and using (9), we have

t (m.n)^ t (rajn)^ t (m,n)'vm+n,

t^fm.n)'« C~(B(n}M tA(m,n)^mn,

t (m,n)^ t (m,!!)^ t (m,n)'-wn(m-n+l) for in> n.

(15)

(16)

Thus for these algorithms the maximum, minimum and average computing

times all coincide. This will not be the case for the Euclidean algorithm,

to which we now ^urn.

^

-

t^^^^m^mmam ^

Ü

li
u
u
u
u

u

u
Ü

11

Ö

Ü

11
0

'1

k . The Maxlnum and Minünam Computlnp Times.

For simplicity, and without loss of genetality, we will consider the

following version of the Euclidean algorithm, for w.iich the permissible in-

puts are the pairs (a,b) of positive Integers with a^-b. The output of the

algorithm is the positive integer c"gcd(a,b).

Algorithm E

(1) [Initialize.] c»-a ; d*-b.

(2) [Divide.] Compute the quotient q and remainder r such that c"dqi-r

and 0< r < d, using algorithm D.

(5) [Test for end.] c*-d ; d«- r; if d/C, go tc {2,.

(h) Return.

This algorithm computes two sequences, (a. ,a0 ,...,« .+2) «nd («Ip^ ^/^

such that a =a, a -b, a =q a with 0<a _<« ., for l< i< i, «nd a .
'1 "• "2 "' "i Mi"Hl "i+2 """" "^"1+2^1+1 '"'* "- "- ■» ' i+2

a. a .. are the successive values assumed by the variable c and q^,...^

ars the successive values assumed by the variable q. (a.,...,a +2) is called

the remainder sequence of (a,b) ant! {ql q^ is called the quotient sequence

of (a,b). Steps (2) and (5) are each executed / times; this is the number of

divisions performed, which we denote by D(a,b).

By (I3)i the computing time for the 1 execution of step (2) is

^Hq)L(a). The computing time for the i' execution of step (5) 1*

certainly dominated by L(a ... since at most it requires copying the digits of

a . and a „3. In an implementation of the algorithm in Which a large integer

is represented by the list of its digits (e.g. [U]) such copying is unnecessary

and the computing time for each execution of step (5) is ~ 1. For the same

reason, we will assume that the single executions of steps (I) and (1*) have

computing times ^1. We then have

8

—

Q

U

U

u
Ü

u
u
Ü

0

fl

D
Ü

tJ*,b) -IU MqJ-LC«^,) r^i i+i' (17)

If Instead we were Co assume that copying is required in steps (1) and (3),

(17) would still hold after adding L(a.) to the right hand side. But Ua^«*"

L(ql)4Lra2) 4 1.(^)1^), so (1?) holds in any case.

Fro« (I?) we will derive the maximum, minimum and average computing times

of Algorithm K, by analyzing the possible distributions of values of the a. and

q , obtaining the codominance equivalence classes of these computing times as

functions of L(a), L(b) and L(c). Thus we consider the decomposition of if into

the sets

^fn,k"C(
a'b):L(a'"m*L(b)"n*L(8cd^'b))"^ (18)

with m>n>k>l. We may verify that each set S , Is non-empty as follows.
~-"~ m, n ,K

■rr » , / m-l m-l> , „ ,, . . m-1, k»! . . .n-1 _. If m-k, then (p ,p)* S . . If m.^k, let a-p +p and b-p . Then in, n IK

c-gcd(.i,b)-pk"1, L(a)-m, L(b)-n and L(c)-k, so (a,b)« S . . As above, we will o^n,*

write t (i>,n,k) in place of tE(SB n k), and similarly for tg and tg.

Theorem ^. t (m,n,k) < n(m-k-H).

Proof. Sine? b-an> «_> •••>•..,* we h*ve by (17) that

tE(a.b) iLCb^J.jLCq^. (19)

Since L(a)'>'L(a+1) for « > 1 and since q > 2 we obtain, by Theorem 2,

][(-lL(V'-L(<lX-l(qi+l))- (20)

Since ai"
<ll
a
i+1

+«i+2
> ^i'i^'i+g' we have qi+l< l-i/*i+2 for 1< ' ■nd henCe

,/-l TTi_1(q1*l)< ala2/aiai+1. Combining this with q,"«/«,^ yields

qiTTi-l(qi+l) <ab/c2- (21)

- ^^

—— — —-

u
u
Ij

Ü

Ü
II
Li

0
U

Ü

U
0
u

Ü

0
•!l

Since L(«b/c2) < L(«2/c2)^ L(«/c)-L(«)-L(c)+l, (I9), (20) and (21)

yield

t (a.b) ± L(b){L(«)-L(c)+l). (22)

from which Theorem 3 is immediate.f

We now proceed to prove that t (m.n.k)^ n(m-k+l), for which purpose we

need the following two theorems.

Theorem U. tE(a,b) ^ D(a,b)fD(a,b)+L(gcd(a,b))).

Proof. Let (q^.^.q) and (a.,...,a) be the quotient and remainder

sequences of (a,b), c-gcd(a,b) and k-L(c). By (1?),

tE(a,b) kJJ,^). (23)

Since •/+2"0, a/+l"c and ai"qiai+l+ai+2 - ai+l+ai■^2, a ,lmPle induction

f l>
shows that a __. > cF. , where F. is the i term of the Fibonacci sequence,

defied by ^"0, F^l and Fl+2-F1+Fl+l. But ([10], p. 82) ^ Zfi*'//?, where

0-(l+^)/2, and ^ soFi+5>0i. Hence ^ ^^(a^^^ J^^S^cF^ >

/(logBc)+2 {li ^«g^1 > /(log c)+(/^2)(logjJ). So for k > 2 and t >k,

^^^(a^ > ifki+(1/16) (log fi))/2 ^ k/+f2 while for k-1 and t>k,

Z i-lL(ai) - (1/I6)(loga0)/2 > f-vU+l2. For i < 5, Jl [.^(«i) > L(c)-k-k/+i2

Zl 2
1*1 t k/+' for a11 k and t> proving the theor-m,

since /«D(a,b). I

Theorem 5. For every positive integer n, there exist positive integers

e and f with e > f, L(e)-L(f)-n, gcd(e,f)-l, and D(e,f)-n.

Proof. Let F^ be the generalized Fibonacci sequence defined by F^ '«l,

1

■ - «— mammmm

1 I"' ««I ■in —

0
Ü

11
Ü

u
u

0

D
a
i]

G
'1

and F^h|, F^, F, ^-h, F'*1^-!, 0 is the remainder sequence of (e,f) so
n+l n lo

gcd(e,f)-l and D(e,f)-n. Hence it suffices to show that for every n > ! there

is an h > 1 such that ß"" < F^h'< V L < ß. It can be verified by calculation
— —■ n — n+i.

that for n < 6 this holds with h-'n.

Since F^h'»F ,+hF for n > 1 (see [10], Section 1.2.8, Exercise Ij) and
n n-1 n —

F -(0
n.0n)/y5 „here fy—f1'^-^) for n > 0 (see [10], Section 1.2.6, Formula

(1U)), we have |Fn-0n^ |-|f/y3!-(l^/0l7/5)0n- But |^|5< .009. »o

|ff -07/51< -005 0" for n > 5 and hence Fn/Fn_1 < 1.005 07-995 f < 1.0110 <

1,6h for n > 6.

Assume as induction hypothesis that B""1 < »* ' < F^J < 0° with h2P> 6-

Let k be the least positive Integer for which 6° < F^j. Then k > h and

^i/^^.^^iVC»«^.!)?^^ V0fO<r/6. 30 r™ < (7/6)F^1)<(7/6)Bn,

Al80' F!^/Fl+l-tFn+l+kFn^V{Fn+kFn+1}<maxfFn+1/Fn.Fn+2/Fn+1l < l.GU, so

F^ < 1.6UF^ < (7/6)(1.6U)P
n < 2fin < B1^1. Hence P

n < F^J < f™ < ^

and k > h+1 > n+l, completing the induction. I

Theorem 6. tE(m,n,k)'Vn(m-k+l).

Proof. By Theorem 3, it suffices to prove that tE(m,n,k) ^ n(m-k+l).

Using Theorem 5, choose e and f with e > f > 0, L(e)-L(f)-n-k+l, gcd(e,f)-l

and D(e,f)-n-k+l. Let B«f and ä»e+qf where q is the least non-negative integer

such that e+qf > pm'k. If q-0 then S-e, m-n and L(l)-m-k+.l. If q=l, then

m > n so ä-e+f < 2e < 2Bn"kfl < t?'**2 < pm"k+1 and L(5)-m-k+l. If q _ then

5-e+qf < 2e+(q-l)f < 2(e+(q-l)f)< ?pm"k < 0m'k+l and L(ä)-m-k+l. Also, gcd(i,B)=

gcd(f,e+qf)-gcd(e,f)-l and D(ä,B)-D(e,f)-n-k+l.

Let c-ß11"1, a=äc and b-5c. Then c-gcd(a,b), L(c)-k, L(a)=m, L(b)=n and

D(a,b)-n-k+l. Hence by Theorem k t|(ni,n,k) ^ (n-k+l) {(n-k+l)+k} ^n(n-k+l) .

11

mmmnmmmmmmmm —
twm '"• "

Q

Ü

U
0
0
u

u

i

o
o
D
Ü

§

Ü

0
'I

Also, by (17), tg(m,n,k) ^ L(q1)L(a2)'«(m-n+l) (n) . So by Theorem 1. part (c),

tt(ni,n,k) ^ nCn-k+O+nCm-n+l^nCm-k+l). I
E

In the next theorem we obtain the minimum computing time of the Euclidean

algorithm, which is much easier.

Theorem 7. t"(m,n,k)'on(m-n+l)+k^n-k+l).

Proof. By (l?). t^m.n.k) > L(q1)L(a2)~n(m-n+l). Since ^H^A^J we

have \¥i>*i/*i¥i and 80 ^-l^i"*"1) >,fT{.l(ai/ai+l^a/c- By (lT). tE(a,b)^

^^(q^LCa^) ^ L(c)][J.^Wc^Mq^) >L(c)L(a/c) > L(c)L(b/c) ~

L(c){L(b)-L(c)+l}. Hence t^m.n.k) > k(n-k+l) and by Theorem 1, Part (c).

t'Cm.n.k) > n(m-n+l)+k(n-k+l).
E

If n-k, let a=Bm"1 and b=pn'1 so that c=pn"1 and D(a,b)-1. By (l?), this
n-1

shows that t"(m,n,k) •< n(m-n+l) •< n(m-n+l)+k(n-k+I)

k-l
If n > k, let a=pm'1+pk"1 and b=en"1. so that c-p*"1, L(a)-m and D(a,b)-2.

Then by (17), t"(m,n,k) ^ n(m-n+l)+k(n-k+l) for n > k. Application of Theorem 1,

Part (h), concludes the proof. fl

12

IMI^MMiliAl
■ - - J

naipp i . t^^mmm

Ö

u
u
u
u
u
Ü

u
u
Q

Ü

Ü

Ü

a
ü
i

.fi

5 • Ttie Average Computing Time

As observed in the proof of Theorem k. If a > b and (a.,a- a ,a)

is the remainder sequence of (a,b), then a > f >$l//5. Since e >/5, we

have I Infi > /n a +1. That is,

D(a,b) < (in 0)'1(/n a +1), (2^)

with (in/)" -2.078 Dixon established iu [6] that for every >0

|D(a,b).Tin a| < (in a)^C (25)

for almost all pairs (a,b) with u > a > b > 1, a.s u -»«, where

T=12TT" in 2, (26)

and we have T-O.S^Yö* • •, By more elementary means, Dixon proved In [7] the

weaker result that

D(a,b) > |in a (27)

for almost all pairs (a,b) with u > a > b > 1 as u -+ «. In the following, we

will show how Dixon's weaker result can be used to prove that the average

computing time of the Euclidean algorithm is codominant with its maximum com-

puting time of n(m-k+l). Before proceeding to the detailed proof, however, I

shall present an intuitive sketch.

It is a well-known result (see [11], Section U.5.2, Excercise 10) that

the proportion of pairs (a,b) with u > a > b > 1 for which gcd(a,b)=l approaches
«2

6TT as u -> 00. We will first generalize this result to the pairs (a,b) with

u > a > b > v as u - v ^ ». Next we set u = ßn-k+* and v = ^ and conclude>

combining this result with Dixon's, that, for n-k large, at least half of the

pairs (a,b) for which u > a > b > v satisfy both gcd(a,b)=l and D(a,b) > ^in a.

For each pair satisfying these conditions and each c with ff'l< c < ßk"^ we

obtain a pair (i,b)-(ac ,bc) with gcd(i,b)=c, L(ä)-L(b)-n and L(c)=k. If m > n

than from each pair (ä,b) we obtain at leabt

^V 13

 - M^^.

1« ■ ■ "'■l

Q

U

Ü

Ü

Ü

D
U
Ü

Q
q
a
ü

ü

i
0
0
0

rl

lpm"n pairs (a,b) of the form (äq+6,B)for which L(a)-m and these also

n-k
satisfy L(b)=n, L(gcd(a,b))-k and D(ä,b) > ^in | " . The fiira (a,b) so

obtained constitute at least .OOUp of all pairs in Sra n k «nd tE(«,b) ^

n(m-k+l) for all (a,b), so t*(:n,n,k) ^ n(m-k+l) for n-k>h, say. But it is

trivial that t (m,n,k) > n(m^k+l) for n-k<h for any constant h, and so
E

t*(m,n,k)^n(m-k+l).

Theorem 8. Letu and v be positive integers withu>v, let w* u-v, and

let q be the number of pairs of integers (a,b) such thatu > a,b > v and

gcd(a,b)--=l. Then \q/v2-6/^\< (2in w + l+)/w.

Proof. Let v. be the number of integers a such that k|a and u> a >v.

Then

|v.-wAl<l. (28)

and v^ is the number of pairs (a,b) for which klgcd(a,b) and u> a, b >v. By

the principle of inclusion and exclusion,

q=Ik=l^(k)vk'

where^A is the Mobius function. By (28),

(|v2.w
2/k2|<2w/k+l

Multiplying (JO byy%:(k)/w and summing, we have, by (29),

where H is the harmonic sum J.^l/k. Using

together with (5I) yields

lq/w2-TT2/6l<(2Hw+l)+^=w+1l/k
2.

Ik

(29)

(50)

(51)

(32)

(53)

'

D
Ü

y

1

D
a

But) . .,l/k <) x dx and H < /n w+1, which establishes the theorem L k=w+l ' / v w- '

after substitution in (35). I

Theorem 9« There is a positive integer h such that for n-k>h, there

. _ nr, 2n-2k+l , / . \ , . J, . n-k+^ . ^ , ^ n-k are at least 0.02p pairs (a,b) for which g B>a>b>B •

gcd(a,b)"l, and D(a,b) > ^/n a.

Proof. Set uH0a'fc*«|l v=p
n"k, w= u-v. Since 6/T72 >0.6, lim

W-* 00

(2in w + l+)/w=0, and gcd(a,b)=gcd(b,a), by Theorem 8 there exists h. such that

there are at least 0.5 w pairs (a,b) for which u> a > b > v and gcd(a,b)=l,

for n-k > h.. By Dixon's theorem there is an h such that if n-k > h? then

D(a,b) < ^in a for at most 0.05 pairs (a,b) withu> a, b > 1. Hence if

h!=max(h1 ,h?) and n-k > h there are at most (l/l+)w" pairs (a,b) for which

u > a > b > v, gcd(a,b)=l and D(a,b) > ^in a. The theorem follows since

• > (/B-l)Bn"k and (/ß-l)2/ß > (/2-l)2/2 > 0.08. I

Theorem 10. There is a positive integer h such that for n-k> h, there

m+n-k are at least 0.00U p pairs (a,b) such that a > b, L(a)=m, L(b)=n,

n-k
L(gcd(a,b))=k and D(a,b) > ifin p

Proof. Choose an h for which Theorem 9 holds. For every pair (a,bj

k-1 k-i
satisfying Theorem 9 and every integei satisfying ß < c < ß ^ we obtain

a pair (ac.bc) with ac >bc, L(ac)=L(bc)=n, L(gcd(ac,bc))"L(c)=k, and

D(ac,bc)=D(a,b) > ^/n a > -gin p " . The mapping f((a,b),c) = (ac ,bc) thus

defined is one-one so there are at least (0.020 ')(/p-l)ß " >0.008p

pairs (a,b) with a > b, L(a)=L(bj-n, L(gcd(a,b))=k and D(a,b) > |in pn"k. If

m=n this completes the proof, so assume m > n. For each pair (a,b) with

L(a)=L(b)=n there are at least [(ßV""1)/*^ ^"VVP" > i^'1)^'^

ifß pairs (aq+b,a) with L(aq+b)=m. Since gcd(aq+b,a)=gcd(a,b) and

15

" —«p

u
u

u
u
0

u
u
Ü

Ü

fl

0

fl

0
Q

Q

D(aq+b,a)-D(a>b)+l we obtain at least (C.00ee2n'k) (*em"n)-O.OOUpm+n"k

pairs (aq+b,a) for which aq+b > a, L(aq+b)=in, L(a)-n, L(gcd(aq+b),a))=k

and D(aq+b,a) > i/n 0n"k. |

Theorem 11. t (m,n,k)rün(m-k+l) .
■

Proof. Let c.=min(l,^in g). By Theorems h and 10, there exist h and

c2 >0 scch that tE(a,b) > c2D(a,b) fD(a,b)+L(gcd(a,b))} > CgC^n-k) fc1(n-k)+k}

2 -4-n k
> c c0n(n-k) for n-k>h and for at least O.OOl+B' ' elements of S , . Every

1 ■ m,n,k '

element of S is of the form (ac.bc) with a< Bm"k+1, b< Bn"k+1 and c< 6k> lit a 11 « IV

o u m+n-k+2 . •*. , 2 -2 . . so S
m n u

has at most ß elements. Hence, t_(m,n,k^ >0.00l+ c,cnB nfn-k^
III , 11 , K ^^ •— Id'

-v n(n-k)for n-k>h. By Theorem 7, t (m,n,k) > n(m-n+l) > n ^ n(n-k) for n-k< h.
■

Hence by Theorem 1, Part (h), t (m,n,k) >• n(n-k). By Theorem 7, tr,(m,n,k) >

n(m-n+l) so by Theorem 1, Part (c), t (m,n,k) > n(n-k)+n(m-n+l)=n(m-k+l). Hence

by Theorem 6, t (m^.k)^ n(m-k+l) .
E

